biflatness and biprojectivity of lau product of banach algebras
Authors
abstract
amonge other things we give sufficient and necessary conditions for the lau product of banachalgebras to be biflat or biprojective.
similar resources
Biflatness and biprojectivity of Lau product of Banach algebras
Amonge other things we give sufficient and necessary conditions for the Lau product of Banachalgebras to be biflat or biprojective.
full textModule amenability and module biprojectivity of θ-Lau product of Banach algebras
In this paper we study the relation between module amenability of $theta$-Lau product $A×_theta B$ and that of Banach algebras $A, B$. We also discuss module biprojectivity of $A×theta B$. As a consequent we will see that for an inverse semigroup $S$, $l^1(S)×_theta l^1(S)$ is module amenable if and only if $S$ is amenable.
full textCyclic amenability of Lau product and module extension Banach algebras
Recently, some results have been obtained on the (approximate) cyclic amenability of Lau product of two Banach algebras. In this paper, by characterizing of cyclic derivations on Lau product and module extension Banach algebras, we present general necessary and sufficient conditions for those to be (approximate) cyclic amenable. This not only provides new results on (approximate) cyclic amenabi...
full textmodule amenability and module biprojectivity of θ-lau product of banach algebras
in this paper we study the relation between module amenability of θ - lau product a×θb and that of banach algebras a, b. we also discuss module biprojectivity of a×θb. as a consequent we will see that for an inverse semigroup s, l 1 (s) ×θ l 1 (s) is module amenable if and only if s is amenable.
full textamenability of banach algebras
chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...
15 صفحه اولMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 39
issue 3 2013
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023